277 research outputs found

    Atomic resolution imaging at 2.5 GHz using near-field microwave microscopy

    Full text link
    Atomic resolution imaging is demonstrated using a hybrid scanning tunneling/near-field microwave microscope (microwave-STM). The microwave channels of the microscope correspond to the resonant frequency and quality factor of a coaxial microwave resonator, which is built in to the STM scan head and coupled to the probe tip. We find that when the tip-sample distance is within the tunneling regime, we obtain atomic resolution images using the microwave channels of the microwave-STM. We attribute the atomic contrast in the microwave channels to GHz frequency current through the tip-sample tunnel junction. Images of the surfaces of HOPG and Au(111) are presented.Comment: 9 pages, 5 figures, submitted to Applied Physics Letter

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates

    Get PDF
    State-of-the-art item recommendation algorithms, which apply Factorization Machines (FM) as a scoring function and pairwise ranking loss as a trainer (PRFM for short), have been recently investigated for the implicit feedback based context-aware recommendation problem (IFCAR). However, good recommenders particularly emphasize on the accuracy near the top of the ranked list, and typical pairwise loss functions might not match well with such a requirement. In this paper, we demonstrate, both theoretically and empirically, PRFM models usually lead to non-optimal item recommendation results due to such a mismatch. Inspired by the success of LambdaRank, we introduce Lambda Factorization Machines (LambdaFM), which is particularly intended for optimizing ranking performance for IFCAR. We also point out that the original lambda function suffers from the issue of expensive computational complexity in such settings due to a large amount of unobserved feedback. Hence, instead of directly adopting the original lambda strategy, we create three effective lambda surrogates by conducting a theoretical analysis for lambda from the top-N optimization perspective. Further, we prove that the proposed lambda surrogates are generic and applicable to a large set of pairwise ranking loss functions. Experimental results demonstrate LambdaFM significantly outperforms state-of-the-art algorithms on three real-world datasets in terms of four standard ranking measures

    Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games

    Get PDF
    Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, where the task is to coordinate multiple agents as a team to defeat their enemies. To maintain a scalable yet effective communication protocol, we introduce a Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a vectorised extension of actor-critic formulation. We show that BiCNet can handle different types of combats with arbitrary numbers of AI agents for both sides. Our analysis demonstrates that without any supervisions such as human demonstrations or labelled data, BiCNet could learn various types of advanced coordination strategies that have been commonly used by experienced game players. In our experiments, we evaluate our approach against multiple baselines under different scenarios; it shows state-of-the-art performance, and possesses potential values for large-scale real-world applications.Comment: 10 pages, 10 figures. Previously as title: "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games", Mar 201

    Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation

    Get PDF
    Recommending users with preferred point-of-interests (POIs) has become an important task for location-based social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task

    A semantic graph based topic model for question retrieval in community question answering

    Get PDF
    Community Question Answering (CQA) services, such as Yahoo! Answers and WikiAnswers, have become popular with users as one of the central paradigms for satisfying users' information needs. The task of question retrieval aims to resolve one's query directly by finding the most relevant questions (together with their answers) from an archive of past questions. However, as the text of each question is short, there is usually a lexical gap between the queried question and the past questions. To alleviate this problem, we present a hybrid approach that blends several language modelling techniques for question retrieval, namely, the classic (query-likelihood) language model, the state-ofthe-art translation-based language model, and our proposed semantics-based language model. The semantics of each candidate question is given by a probabilistic topic model which makes use of local and global semantic graphs for capturing the hidden interactions among entities (e.g., people, places, and concepts) in question-answer pairs. Experiments on two real-world datasets show that our approach can significantly outperform existing ones

    Development of Creep Models for Glued Laminated Bamboo Using the Time-Temperature Superposition Principle

    Get PDF
    This paper describes the development of creep models for glued laminated bamboo (GLB)using the time-temperature superposition principle (TTSP). Creep (15 min) and recovery (45 min) data were obtained at constant temperature levels ranging from 25 to 65C. The moisture contents of specimens for testing were dry, 7% and 12%. The individual curve at each temperature was plotted against the log-time axis to obtain a master curve. A nonlinear regression analysis was used to estimate the model parameters. Then the individual temperature master curves were shifted again to a reference MC to construct an overall master curve using time-temperature-moisture principle. The relation of temperature and moisture shift factors loga (T, M) to temperature (T) and MC (M) was analyzed. The results show that the TTSP was successfully applied to GLB tested at different moisture contents

    A dynamic learning method based on the Gaussian process for tunnel boring machine intelligent driving

    Get PDF
    Introduction: The application of intelligent learning methods to the mining of characteristics and rules of time-series data has gained increasing attention with the rapid development of deep learning. One critical application of such methods is the intelligent assistant driving of tunnel boring machines (TBMs), for which the optimization of driving parameters is essential to improve construction efficiency. However, existing prediction models for TBM parameters are “static” and cannot dynamically capture parameter evolution during real-time driving cycles.Methods: In this study, we propose a novel dynamic learning model for TBM parameters by introducing the Gaussian process to address this problem. The model can learn decision-making experiences from historical driving cycles, dynamically update the model based on small sample data from current driving cycles, and simultaneously achieve driving parameter prediction. We focused on real-time prediction of TBM parameters in a tunnel project in western China.Results: The results show that the average relative errors of predicted total thrust and torque values were 1.9% and 2.7%, respectively, and the prediction accuracy was higher than that of conventional models such as random forest and long short-term memory. The model fully exploited updating of small samples of parameters, reducing the average time cost of the model to 29.7 s, which satisfies the requirements of efficient application.Discussion: The dynamic learning strategy of time-series data adopted in this study provides a reference for other similar engineering applications. The proposed model can improve the prediction accuracy of TBM parameters, thus facilitating the optimization of driving parameters and enhancing the construction efficiency of tunnels.Conclusion: In summary, this study establishes a dynamic learning model of TBM parameters that can dynamically capture parameter evolution and achieve accurate real-time driving parameter prediction. The proposed model can contribute to the development of intelligent assistant driving of TBMs and similar engineering applications
    corecore